Club Math du Cégep de Sherbrooke

Arithmétique des entiers et modulos

Créé par Jean-Philippe Morin le 25 septembre 2023

Théorie

Théorème de la division euclidienne

Pour tout entier n, appelé **dividende**, étant donné un autre entier d > 0, appelé diviseur, il est toujours possible de trouver un, et un seul, couple d'entiers (q, r) tels que

$$n = qd + r$$
, $0 \le r < d$

Les entiers q, r sont appelés **quotient** et **reste** de la division par d; les valeurs possibles de reste se retrouvent dans l'ensemble $\{0,1,...,d-1\}$. On peut noter $r=n \mod d$.

Autrement dit : $0 \le n - qd < d$ ou encore $qd \le n < q(d+1)$.

Divisibilité et congruence

Lorsque r = 0, et donc n = qd, on dit que d divise n (ou encore d est un facteur de n), et que n est multiple de d, et on l'écrit $d \mid n$.

Remarques:

- tout entier n est divisible par 1, puisque $n = n \cdot 1$;
- le nombre 0 est divisible par tout entier d puisque $0 = 0 \cdot d$

Pour deux entiers m, n:

- ils admettent toujours (au moins) le nombre 1 comme diviseur commun : on note pgcd(m, n) le **plus grand des diviseurs communs** à m et n.
- ils admettent toujours (au moins) le nombre mn comme **multiple commun** : on note ppcm(m,n) les **plus petit des multiples communs** à m et n

Résultats importants : Pour deux nombre m, n,

- tout diviseur commun est facteur du pgcd : si $d \mid m$ et $d \mid n$, alors $d \mid pgcd(m, n)$.
- tout multiple commun est multiple du ppcm : si $m \mid p$ et $n \mid p$, alors ppcm $(m, n) \mid p$.
- on peut calculer $\operatorname{pgcd}(m,n)$ grâce à **l'algorithme d'Euclide**: $\operatorname{pgcd}(m,n) = \operatorname{pgcd}(n,r)$ où r est le reste de la division euclidienne de m par n. Il s'agit de poser $r_0 = n$, $r_1 = r$, et successivement calculer r_n le reste de la division de r_{n-2} par r_{n-1} : on construit ainsi une suite décroissante

$$r_0 > r_1 > \dots > r_n > \dots > 0$$
, et le pgcd est l'avant-dernier terme.

- $\operatorname{pgcd}(m,n) \cdot \operatorname{ppcm}(m,n) = m \cdot n$ de sorte que $\operatorname{ppcm}(m,n) = \frac{m \cdot n}{\operatorname{pgcd}(m,n)}$
- on peut toujours exprimer leur pgcd comme somme de multiples de ces nombres :

$$pgcd(m, n) = rm + sn$$
 pour certains r, s

Congruence modulaire

Étant donné deux entiers a, b, on dit qu'ils sont **congruents modulo** d si $d \mid (b-a)$: on écrit

$$a \equiv b \pmod{d}$$

- Dans ce cas (b a) = dq et autrement dit b = a + dq pour un certain nombre q;
- De plus, ces deux entiers a et b ont le même reste lorsque divisés par d.
- En particulier, tout nombre n est congruent modulo d à son reste de division par d: on peut donc faire la liste des plus petits représentants de congruences modulo d: $\{0,1,2,...,d-1\}$

La relation de congruence se comporte un peu « comme une égalité » et est compatible avec les opérations

```
a \equiv a \pmod{d}
si a \equiv b \pmod{d}, alors b \equiv a \pmod{d}
si a \equiv b \pmod{d}, alors b \equiv a \pmod{d}
alors a \equiv b \pmod{d}
si a \equiv b \pmod{d}
e + f \equiv a + b \pmod{d}
e - f \equiv a - b \pmod{d}
e \cdot f \equiv a \cdot b \pmod{d}
```

Lorsque $m \cdot n \equiv 1 \pmod{d}$, on dit que m et n sont l'un l'autre des **inverses modulo** d.

```
Exemple: 5 \cdot 3 \equiv 1 \pmod{7}, donc 5 est l'inverse de 3 modulo 7. Si on veut résoudre 3x \equiv 4 \pmod{7}, il suffit alors de multiplier de part et d'autre par 5 : x \equiv 5 \cdot 3x \equiv 5 \cdot 4 \equiv 6 \pmod{7}
```

Exemples résolus

Problème 15 AMC10A-2003

Combien d'entiers de l'ensemble {1,2,3, ...,100} sont divisibles par 2 mais pas divisibles par 3?

Les nombres divisibles par 2 sont les entiers pairs $\{2,4,6,8,...,100\} = \{2 \cdot q \mid 1 \leq 2q \leq 100\}$, et les nombres divisibles par 3 sont $\{3,6,9,...,99\} = \{3 \cdot q \mid 1 \leq 3q \leq 100\}$. On a donc 50 (quotient de 100 divisé par 2) nombres pairs et 33 (quotient de 100 divisé par 3, avec reste 1) multiples de 3. On veut « éliminer » de l'ensemble de nombres pairs ceux qui font aussi partie des multiples de 3 : il s'agit des multiples communs à 2 et 3, qui correspondent aux multiples de ppcm(2,3). On a pgcd(2,3) = 1, puisque les diviseurs de 2 sont 1,2 et ceux de 3 sont 1,3 : alors ppcm(2,3) = $\frac{2\cdot 3}{pgcd(2,3)}$ = 6. Il faut donc retrancher les multiples de 6 : $\{6 \cdot q \mid 1 \leq 6q \leq 100\}$: comme $100 = 96 + 4 = 6 \cdot 16 + 4$, il y a 16 nombres pairs qui sont multiples de 3, $\{6,12,18,...,96\}$. Il reste donc 50 - 16 = 34 nombres divisibles par 2 mais pas par 3.

Problème 21 AMC10B-2009

Ouel est le reste de la division de $3^0 + 3^1 + 3^2 + \cdots + 3^{2009}$ par 8?

Remarquons que $3^0 \equiv 1 \pmod{8}$, $3^1 \equiv 3 \pmod{8}$ et $3^2 = 9 \equiv 1 \pmod{8}$

Les puissances paires ont donc un reste de 1 modulo 8, et les autres un reste de 3. On divise 2009 par 2 :2009 = $2008 + 1 = 1004 \cdot 2 + 1$: il y a 1004 nombre pairs dans la liste $\{1,2,...,2009\}$ des exposants dans la somme, donc les 1005 restants sont impairs. On peut faire la somme des congruences $1004 \cdot 1 + 1005 \cdot 3 = 4019$. Divisons ce total par 8 : $4019 = 502 \cdot 8 + 8$

Exercices

Problème 1 AMC10B-2017

Marie a pensé à un nombre positif de 2 chiffres. Elle l'a multiplié par 3 et a additionné 11. Puis elle a interverti les chiffres du résultat, obtenant un nombre entre 71 et 75, inclusivement. Quel était le nombre de Marie?

Problème 15 AMC10A-2005 On note $n! = n(n-1)(n-2) \cdots 2 \cdot 1$ Combien de cubes positifs divisent $3! \cdot 5! \cdot 7!$?

Problème 22 AMC10B-2020

Quel est le reste de la division de $2^{202} + 202$ par $2^{101} + 2^{51} + 1$?

Problème 13 AMC10B-2018

Parmi les 2018 premiers nombres de la suite 101, 1001, 10 001, 100 001,..., combien sont divisibles par 101?

Problème 12 AMC10B-2014

Le plus grand diviseur de 2 014 000 000 est lui-même. Quel est son cinquième plus grand diviseur?

Problème 17 AMC10B-2014

Quelle est la plus grande puissance de 2 qui est un facteur de $10^{1002} - 4^{501}$

Problème 18 AMC10B-2003 12 AMC12B-2003

Quel est le plus grand entier qui soit diviseur de (n + 1)(n + 3)(n + 5)(n + 7)(n + 9) quel que soit l'entier pair positif n?

Problème 12 AMC12-2001

Combien d'entiers positifs ne dépassant pas 2001 sont multiples de 3 ou de 4, mais pas de 5?

Problème 7 AMC12B-2014

Pour combien d'entiers positifs n, le nombre $\frac{n}{30-n}$ est-il aussi un entier positif?

Problème 2c) Euclide 2020

Soit *n* un entier strictement positif et soit la valeur de $\frac{n^2+n+15}{n}$ un entier.

Déterminer toutes les valeurs possibles pour n.

Problème A4 DOCM 2009

Les entiers strictement positifs 15, 12 et n ont la propriété que le produit de n'importe quels deux d'entre eux est divisible par le troisième. Déterminez la plus petite valeur possible de n.

Problème B4 DOCM 2009

Étant donné un entier strictement positif n, on définit f(n) comme étant le plus petit entier strictement positif s pour lequel $1 + 2 + 3 + \cdots + (s - 1) + s$ est divisible par n. Par exemple f(5) = 4, puisque 1 + 2 + 3 + 4 est divisible par n, mais ni n, ni n and n are definitely n are definitely n and n are definitely n and n are definitely n and n are definitely n are definitely n and n are definitely n are definitely n and n are

- (a) Déterminer tous les entiers strictement positifs a pour lesquels f(a) = 8.
- **(b)** Démontrer qu'il existe une infinité d'entiers positifs impairs b pour lesquels f(b+1) f(b) > 2009.
- (c) Déterminer la plus petite valeur strictement positive de k pour laquelle l'équation f(c) = f(c + k) admet une solution entière impaire strictement positive comme valeur de c. Appuyer le travail par une preuve.

Problème B2 DOCM 2011

Les entiers a, b, c, d et e satisfont aux trois propriétés suivantes :

- i) $2 \le a < b < c < d < e < 100$
- ii) pgcd(a, e) = 1
- iii) a, b, c, d, e est une suite géométrique

Quelle est la valeur de *c*?

Problème B2 DOCM 2012

Pour chaque entier positif n, on définit $\varphi(n)$ comme étant le nombre de diviseurs positifs de n. Par exemple, $\varphi(10)=4$ car 10 admet 4 diviseurs positifs: $\{1,2,5,10\}$. Si n est un entier positif tel que $\varphi(2n)=6$, déterminer la valeur minimale possible de $\varphi(6n)$.

Problème B1 DOCM 2015

Pour un entier $n \ge 2$, on pose f(n) comme étant le deuxième plus grand diviseur positif de n. Par exemple, f(12) = 6 et f(13) = 1. Quel est le plus grand entier positif n tel que f(n) = 35?

Problème C3 DOCM 2015

- (a) Si n=3, déterminez toutes les valeurs entières de m pour lesquelles m^2+n^2+1 est divisible par m-n+1 et par m+n+1.
- **(b)** Montrez que pour n'importe quel entier n, il y a toujours au moins une valeur entière m pour laquelle $m^2 + n^2 + 1$ est divisible par m n + 1 et par m + n + 1.
- (c) Montrez que pour n'importe quel entier n, il y a seulement un nombre fini de valeurs entières m pour lesquelles $m^2 + n^2 + 1$ est divisible par m n + 1 et par m + n + 1.

AIME 02-1984

L'entier n est le plus petit multiple strictement positif de 15 tel que chacun de ses chiffres soit 8 ou 0. Calculer $\frac{n}{15}$.

AIME 05-1986

Quel est le plus grand entier strictement positif n tel que $n^3 + 100$ soit divisible par n + 10?

AIME 13-1985

Les nombres de la suite 101, 104, 109, 116,..., sont de la forme $a_n = 100 + n^2$, avec n = 1,2,3,...Pour tout n, soit $d_n = \operatorname{pgcd}(a_n, a_{n+1})$. Trouver la valeur maximale des d_n quand n parcourt les entiers strictement positifs.

AIME 06-1983

Soit $a_n = 6^n + 8^n$. Déterminer le reste de la division de a_{83} par 49.

AIME 07-1985

Supposons que a, b, c, d sont des entiers strictement positifs tels que $a^5 = b^4$, $c^3 = d^2$ et c - a = 19. Déterminer la valeur de d - b.

Mock AIME 1 2006-2007 Problem 12

Soit k un entier strictement positif dont le premier chiffre est 4 et tel que si l'on retire le premier chiffre et notons m le nouvel entier obtenu, alors 14m + 1 = k. Trouvez combien de valeurs possibles pour m se retrouvent entre 0 et 10^{2007}

2007 iTest Problems/Problem TB1

La somme des chiffres d'un entier est égale à la somme des chiffres du triple de cet entier. Prouvez que l'entier est un multiple de 9.

2010 AIME I Problems/Problem 2

Trouver le reste de la division par 1000 de $9 \times 99 \times 999 \times \cdots \times 999 \times 999$

2004 AIME I Problems/Problem 1

Les chiffres d'un entier strictement positif n sont quatre entiers consécutifs dans l'ordre décroissant lorsqu'ils sont lus de gauche à droite. Quelle est la somme des restes possibles lorsque n est divisé par 37?

Références

- https://fr.wikipedia.org/wiki/Division_euclidienne
- https://artofproblemsolving.com/wiki/index.php/Divisor
- https://artofproblemsolving.com/wiki/index.php/Greatest_common_divisor
- https://artofproblemsolving.com/wiki/index.php/Least_common_multiple
- https://fr.wikipedia.org/wiki/Congruence_sur_les_entiers